
ER
D

C/
CH

L 
TR

-1
2-

4 

  

 

  

More Efficient Bayesian-based Optimization 
and Uncertainty Assessment of Hydrologic 
Model Parameters 

Co
as

ta
l a

nd
 H

yd
ra

ul
ic

s 
La

bo
ra

to
ry

 

  

Brian E. Skahill and Jeffrey S. Baggett February 2012 

   

Approved for public release; distribution is unlimited. 
  



 

 

 ERDC/CHL TR-12-4 
February 2012 

More Efficient Bayesian-based Optimization and 
Uncertainty Assessment of Hydrologic Model 
Parameters 

Brian E. Skahill 
Coastal and Hydraulics Laboratory 
U.S. Army Engineer Research and Development Center 
3909 Halls Ferry Road 
Vicksburg, MS 39180 

Jeffrey S. Baggett 
University of Wisconsin at La Crosse 
1725 State Street 
La Crosse, WI 54601 

Final report  
Approved for public release; distribution is unlimited. 

Prepared for U.S. Army Corps of Engineers 
Washington, DC 20314-1000 



ERDC/CHL TR-12-4 ii 

 

Abstract 

An important consideration in assessing the performance of model 
calibration software is that of run time. Minimizing the number of 
hydrologic model runs required during the calibration process is nearly 
always important, but particularly when the objective function landscape 
contains multiple local minima or hydrologic model run times are high. 
Minimizing the number of required model runs was one of the primary 
factors driving the research and development activities encapsulated in 
this report, such that the resulting optimization and uncertainty tool(s) are 
more compatible with the computationally expensive physics-based 
models that are becoming more commonly used within the practice 
community. SCEM-FA is a modified version of the Markov Chain Monte 
Carlo sampler SCEM-UA. It is more efficient than the native SCEM-UA 
algorithm, through employment of function approximation, while 
effectively inferring the posterior parameter distribution of model 
parameters and also the most likely parameters within this high 
probability density region. Based on a summary of thirty random trials, 
SCEM-FA was able to infer, effectively, the same posterior probability 
distribution for thirteen SAC-SMA hydrologic model parameters as that of 
SCEM-UA with an average twenty-one percent savings in total forward 
model calls. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Preface 

This report describes a Markov Chain Monte Carlo sampler entitled the 
Shuffled Complex Evolution Metropolis algorithm Function Approximation 
(SCEM-FA), which is a modification to the original SCEM-UA algorithm. It 
employs function approximation methods to improve upon the overall 
efficiency of the Shuffled Complex Evolution Metropolis algorithm (SCEM-
UA), while effectively inferring the posterior parameter distribution of 
model parameters and also the most likely parameters within this high 
probability density region.  

Research presented in this technical report was developed under the 
U.S. Army Corps of Engineers Flood Damage Reduction Demonstration 
Program for Arid and Semi-Arid Regions. Dr. Cary Talbot, Coastal and 
Hydraulics Laboratory (CHL), is the program manager. 

The work was performed by Dr. Brian E. Skahill of the Hydrologic Systems 
Branch (HF-H) of the Flood and Storm Protection Division (HF), U.S. Army 
Engineer Research and Development Center – Coastal and Hydraulics 
Laboratory (ERDC-CHL) and Dr. Jeffrey S. Baggett of the University of 
Wisconsin – La Crosse. At the time of publication, Earl V. Edris was Chief, 
CEERD-HF-H; Bruce A. Ebersole was Chief, CEERD-HF. The Deputy 
Director of ERDC-CHL was Jose E. Sanchez and the Director was 
Dr. William D. Martin.  

COL Kevin J. Wilson was the Commander and Executive Director of 
ERDC, and Dr. Jeffery P. Holland was the Director. 
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1 Introduction 

Hydrologic models, regardless of their type (e.g., empirical, physics-based), 
often contain parameters that cannot be measured directly either because 
they have no physical basis, it would be impractical, or due to an incompati-
bility of scales, among other possible reasons. Hence, hydrologic model 
parameters are inferred by adjusting their values until an acceptable level of 
agreement is achieved between a set of historical observations of the real 
world system that the model represents and their simulated counterparts. 
While manual model calibration is certainly one approach to the problem, it 
is subjective, labor-intensive, and may also suffer from a lack of consistency 
and/or repeatability, among others. Moreover, it is difficult to imagine how 
even an experienced modeler would necessarily manage, in a manual 
calibration context, the large number of estimable parameters associated 
with present-day practice- driven complex hydrologic model deployments. 
Fortunately, the computer-based calibration of hydrologic models (which, 
in contrast with the manual approach to model calibration, is more 
objective, repeatable, and better capitalizes on the computational capacity of 
the modern computer) is an active area of research and development (see; 
for example, Baggett and Skahill, 2010a, b; Skahill et al. 2009, Skahill and 
Doherty, 2006; Doherty and Skahill, 2006, and references cited therein) 
which has resulted in numerous automatic calibration methods that are 
readily available (see Matott et al. 2009 and references cited therein) for the 
modern day hydrologic modeler to employ. And the knowledge gained by 
their application and development has provided the hydrologic modeling 
community with a better understanding of some of the complications 
associated with calibrating hydrologic models; viz., among others, the 
existence of multiple local optima, non-smooth objective function surfaces, 
and long valleys in parameter space that are a result of excessive parameter 
correlation or insensitivity (Gupta et al. 2003; Duan et al. 1992).  

As mentioned, hydrologic models are typically calibrated by adjusting 
parameters encapsulated in the simulator until there is an acceptable level 
of agreement between a set of historical data and their model simulated 
counterparts. The parameters obtained via calibration are often then used 
by the model to predict system behavior for one or more pre-defined 
scenarios of interest to different groups whose life or livelihood is rooted 
in the local model study area. Regardless of the calibration method 
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employed and the type (e.g., empirical or physics-based) of model used, 
some if not all of the parameter values obtained through the calibration 
process possess a degree of quantifiable uncertainty because the observed 
data contain measurement errors and also because the model never 
perfectly represents the watershed system or exactly fits the observation 
data. And where model parameters are uncertain so too are model 
predictions. In particular, quantifying uncertainty supports, among others, 
the following hydrologic modeling activities (Schoups and Vrugt, 2010; 
Schoups et al., 2010): 

1. Model comparison and selection, 
2. Identification of the best water management strategies that reflect the 

likelihood of outcomes, 
3. Data collection aimed at improving hydrologic predictions and water 

management, and 
4. Regionalization and extrapolation of hydrologic parameters to ungauged 

basins. 

For example, regarding item four above, to quote Vrugt et al. (2003a), “If 
we want to be able to regionalize or relate model parameters to easily 
measurable land or soil-surface characteristics, a prerequisite is that the 
parameters be unique, preferably having a small variance. From this 
perspective, it is necessary to infer the parameter uncertainty resulting 
from calibration studies.” 

Model uncertainty, characterized by the model covariance matrix calculated 
using the model Jacobian (Skahill and Doherty, 2006) evaluated at the best 
estimate for the model, can be quantified by employing a traditional linear 
analysis. However, this approach is local which does not dovetail well with 
the understanding that for hydrologic models there may exist many 
effectively equally acceptable models; i.e., it is difficult to identify a unique 
best estimate; and moreover, that the set of good models may very well not 
necessarily even be a closed and bounded set interior to feasible parameter 
space. In addition, it relies on a linearity assumption that is often violated in 
hydrologic modeling practice.  

Bayesian-based approaches to model calibration, wherein a prior 
distribution for the model is proposed, and the vector of adjustable model 
parameters is treated as a random variable with a target probability 
distribution that is conditioned with observed data, are a formal means to 
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obtain a realistic and reliable estimate of model uncertainty. In particular, 
Markov Chain Monte Carlo (MCMC) simulation, which is by far more 
efficient than other Monte Carlo methods, is used for inference, search, 
and optimization with hydrologic models (Harmon and Challenor, 1997; 
Kuczera and Parent, 1998; Campbell et al., 1999; Campbell and Bates, 
2001; Makowski et al., 2002; Qian et al., 2003; Kanso et al., 2003; Vrugt 
et al., 2003a; Vrugt et al., 2003b; Vrugt et al., 2008). With MCMC we are 
interested in a target probability distribution, and its key elements include 
exploration of this distribution by way of some sort of random walk or 
diffusion process that must be initialized in an arbitrary way because we 
don’t know a priori where good places necessarily are in parameter space. 
The random walk is directed by Markov chain simulation wherein the next 
step only depends on the previous step, and eventually after a burn in 
period the target distribution is identified.  

An obvious advantage of the MCMC method is that no assumptions of 
model linearity, or even of differentiability of model outputs with respect 
to parameter values, are required for its implementation; hence it is 
extremely robust. However, this robustness comes at a cost; this being the 
high number of model runs required for its implementation. The choice of 
the proposal distribution, which expresses prior information about the 
model, can greatly affect the efficiency of an MCMC sampler. A poorly 
chosen proposal distribution will result in slow convergence to the target 
distribution. Unfortunately, for complex hydrologic models there is very 
little a priori knowledge of the high probability density region within 
parameter space. Hence, with hydrologic models an uninformative prior; 
wherein all parameters have equal likelihood, may often be the best we can 
do. Clearly, for hydrologic modeling, there is a need to design efficient 
MCMC samplers, and this observation was the motivation for the 
development of the Shuffled Complex Evolution Metropolis algorithm 
(SCEM-UA), an effective and efficient adaptive MCMC sampler which 
tunes the proposal distribution during the evolution to the stationary 
posterior target distribution (Vrugt et al. 2003a). 

The SCEM-UA algorithm is a modification to the SCE-UA global optimiza-
tion algorithm (Duan et al. 1992, 1993). There are two primary modifica-
tions, both of which prevent SCEM-UA from collapsing into the region of a 
single best parameter set. The first modification involves replacement of the 
downhill simplex method with the Metropolis-annealing scheme 
(Metropolis et al. 1953). The second modification is that SCEM-UA does not 
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further subdivide the complex into subcomplexes during the generation of 
candidate points and it uses a different replacement procedure. In 
presenting the SCEM-UA algorithm, Vrugt et al. (2003a) noted that their 
principal focus was algorithm efficiency; viz., the number of simulations 
needed to converge to the stationary posterior probability distribution. They 
compared the traditional Metropolis-Hastings sampler (Metropolis et al. 
1953; Hastings, 1970) with SCEM-UA to infer the posterior distribution of 
five parameters associated with a conceptual rainfall-runoff model. It took 
SCEM-UA approximately 4,000 simulations to converge to the stationary 
posterior distribution, based on evaluation of the Gelman and Rubin 
convergence diagnostic (Gelman and Rubin, 1992); whereas, even after 
30,000 simulations the Metropolis-Hastings algorithm had not converged 
to the target distribution when applying the same convergence criteria. 

An important consideration in assessing the performance of model 
calibration software is that of run time. Model calibration software, no 
matter what its algorithmic basis, must run the hydrologic model to be 
calibrated many times in the course of minimizing the objective function 
that is used to characterize model-to-measurement misfit. Minimizing the 
number of hydrologic model runs required during the calibration process 
is nearly always important, but particularly when the objective function 
landscape contains multiple local minima or hydrologic model run times 
are high. Minimizing the number of required model runs is the primary 
factor driving the research and development to be discussed herein, such 
that the resulting optimization and uncertainty tool is compatible with the 
computationally expensive physics-based models that are becoming more 
commonly used within the practice community. 

Recent research and development activity directed at improving the 
efficiency of native computer-based model calibration algorithms includes 
the work of Skahill et al. (2009) and Baggett and Skahill (2010a, b), among 
others. Skahill et al. (2009) developed an accelerated derivative-based local 
search algorithm and based on three separate modeling applications 
demonstrated efficiency gains anywhere from 36-84 percent in comparison 
with the native algorithm. Baggett and Skahill (2010a, b) reported on an 
efficiency enhancement to the state-of-the-art covariance matrix adaption 
evolution strategy (CMAES) (Hansen, 2006) for global parameter 
identification of difficult problems with noise or other features that make 
derivatives estimation difficult. The increase in convergence speed was quite 
dramatic for their modified CMAES algorithm, which uses a local radial 
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basis function approximation to the objective function to compute 
approximate first and second derivatives to the objective function surface to 
propagate a gradient individual alongside the evolving population for 
possible selection each generation. Based on a summary of thirty trials, it 
converged with fewer than half of the objective function evaluations 
required by CMAES when applied to calibrate a hydrologic model.  

The primary objective of the research and development encapsulated in 
this report was to improve upon the already existing documented 
efficiency of an existing state-of-the-art Bayesian model uncertainty 
analysis method (Vrugt et al. 2003a). The principal approach that was 
employed to achieve the stated objective was to simultaneously and 
adaptively construct an approximation to the objective function.  

Background 

The hydrologic model f can be written as 

 ( );  f e= +y θ x
  (1) 

where ŷ, x, θ, and e represent, respectively, the vector of model outputs, 
structural aspects of the model, as well as its input dataset, model 
parameters that are adjustable through the calibration process, and the 
vector of statistically independent error terms with zero expectation and 
constant variance σ2. Given the vector of observations y, the vector of 
residuals is given by  

 ( ) –e =θ y y
  (2) 

Bayesian statistics treats the model parameters θ as probabilistic variables 
having a joint posterior probability density function (pdf), p(θ|y). The 
posterior pdf is a probabilistic statement about the parameters θ 
conditioned on the observed data y. At the core of Bayesian inference is 
Bayes’ rule, which is given by  

 ( ) ( ) ( )| |p L pµθ y y θ θ  (3) 

where p() indicates probability, p(θ|y) is the posterior probability distribu-
tion of the parameters θ, L(y|θ) is the likelihood function, and p(θ) is the 
prior probability density function. The prior pdf, p(θ), represents informa-
tion about θ before any data are collected. A critical term in Bayes’ rule is 
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the likelihood term; likelihoods can only be calculated if an error model is 
available. Assuming that the residuals are mutually independent, Gaussian 
distributed, with constant variance, and further assuming a non-informative 
prior of the form p(θ)  σ-1, Box and  

Tiao (1973) derived the following form for the posterior probability 
distribution of θ: 

 ( ) ( )[ ] ( )N 1 γ /2|p M - +µθ y θ  (4) 

where 

 ( ) (1 γ) 1 θ2M i Ne += =θ  (5) 
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2 The Shuffled Complex Evolution 
Metropolis Function Approximation 
Algorithm 

The goal of the Shuffled Complex Evolution Metropolis (SCEM-UA) 
algorithm, a Markov Chain Monte Carlo sampler developed by Vrugt et al. 
(2003a) which is a modified version of the original SCE-UA global 
optimization algorithm developed by Duan et al. (1992), was to efficiently 
(and by efficiency, we mean the number of forward model calls necessary 
to converge to the target posterior distribution) infer the posterior 
distribution of hydrologic model parameters. The SCEM-UA algorithm is 
not only able to effectively infer the posterior distribution of hydrologic 
model parameters but also the most likely parameters within this high 
probability density region. Function approximation methods have 
successfully been employed to improve upon the efficiency of native 
evolutionary strategies utilized for model calibration; for example, see 
Baggett and Skahill (2010a, b) and references cited therein. By interfacing 
function approximation methods with the native SCEM-UA algorithm, we 
further improve upon the already existing reported efficiencies of the 
SCEM-UA MCMC sampler. The new algorithm presented in full herein, 
entitled the Shuffled Complex Evolution Metropolis Function Approxi-
mation (SCEM-FA) algorithm, is given below and also illustrated in 
Figures 1 and 2. The SCEM-FA algorithm retains all of the elements of the 
original SCEM-UA algorithm. We refer the interested reader to Vrugt et al. 
(2003a) for a thorough description and discussion of the original SCEM-
UA algorithm. However, for purposes of completeness, we present the 
entire SCEM-FA algorithm. We will emphasize those parts which 
constitute the existing function approximation interface to the original 
SCEM-UA algorithm. For further clarity regarding the SCEM-FA and 
SCEM-UA algorithms, we make mention now of the fact that the function 
approximation interface methodology presented herein is not only 
possible with SCEM-UA, but likely could also easily be adapted and 
employed with other MCMC samplers; for example, DREAM (Vrugt et al. 
2008). 
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Figure 1. Flowchart of the SCEM-FA algorithm. 

START 

+ 
Input : n = dimension, q = nunnber of complexes 

s = population size, r = random number threshold 
a = acceptance threshold, p = persistence value 

Compute the number of points in complex (m=s/ q) . 

• 
Sample s points in the feasible space using prior dist ribut ion. 

Compute the posterior density at each point . 

• 
Train the LWPR function approxima tion with the s samples. 

If s is small, present them to LWPR mult iple times in random order. 

+ 
Sort the s points in order of decreasing 

posterior density. Store them in D. 

+ 
Initialize q parallel sequences S start ing at the q 
points of D with the highest posterior density. 

+ 
I Part ition D into q complexes c•, k = 1, .. . , q of m points. 

I I 
+ 

For k = 1, .. . , q, compute a r andom number. r---- Modified SEM algorithm. 
Evolve each sequence k Si', k = 1, .. . , q. I+- (see Figure 2). 

+ 
Update r based on the· number of 
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+ 
Replace c•, k = 1, .. . , q, into D and sort D 
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convergence cr iteria 

satisfied? 

Yes 

STOP 
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Figure 2. Flowchart of the SEM-FA algorithm employed in the SCEM-FA algorithm. 
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I I Use function approx. to compute p(91"11 IY) 
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Update L W PR function approximation 

I Compute 0 = p(91"11 IY)/ p(91•1 IY) and draw uniform label Z over the interval [0,1) I 
Yes ~ No 

~No ~ r 

e 

Forward model call to compute p(9~"i ) y) 
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No 
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<8<.. I I No 
I 13 = 13 +1 I 

urn to SCEM-FA 
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1. Generate sample. Sample s {θ1, θ2, ..., θs} points randomly from the prior 
distribution and computes the posterior density of each point {p(θ(1)|y), 
p(θ(2)|y), …, p(θ(s)|y)} using equation (4). 

2. Rank points. Sort the s points in order of decreasing posterior density and 
store them in array D[1:s, 1:n + 1] where n is the number of parameters, so 
that the first row of D represents the point with the highest posterior 
density. 

3. Build function approximation. Train a locally weighted projection 
regression function (LWPR) approximation (Vijayakumar et al. 2005) 
using the s points randomly sampled from the prior distribution. If the 
sample is small, then present the sample to LWPR multiple times in 
random order. 

4. Initialize parallel sequences. Initialize the starting points of the parallel 
sequences, S1, S2, …, Sq, such that Sk is D[k, 1:n + 1], where k = 1, 2, ..., q. 

5. Partition into complexes. Partition the s points of D into q complexes C1, 
C2, …, Cq, each containing m points, such that the first complex contains 
every q(j-1)+1 ranked point, the second complex contains every q(j-1)+2 
ranked point of D, and so on, where j = 1, 2, …, m.  

6. Evolve each sequence. Evolve each of the parallel sequences according to 
the Sequence Evolution Metropolis Function Approximation (SEM-FA) 
algorithm outlined below. 

7. Adjust SEM-FA input value r. Based on the monitored acceptance rate in 
SEM-FA, and predefined input values for an acceptance rate threshold for 
SEM-FA, and the occurrence frequency for SEM-FA input parameter 
adjustment, update the SEM-FA input, r, a number in the interval (0,1) 
which effectively dials in or out the employment of function approximation 
in SEM-FA.  

8. Shuffle complexes. Unpack all complexes C back into D, rank the points in 
order of decreasing posterior density, and reshuffle the s points into q 
complexes according to the procedure specified in step 5.  

9. Check convergence. Check the Gelman and Rubin convergence statistic 
(Gelman and Rubin, 1992). If convergence criteria are satisfied, stop; 
otherwise, return to step 6.  

Items 3, 6, and 7 above are specific to the SCEM-FA algorithm while the 
other elements are a restatement of the native SCEM-UA algorithm 
originally presented in Vrugt et al. (2003a). The first modification, listed in 
item 3 above, uses the initial random sample to build a function approxi-
mation model which is later used in SEM-FA as a surrogate for the objective 
function. While locally weighted progression regression (Vijayakumar et al. 
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2005) was the function approximation method used for the current 
modifications to the SCEM-UA algorithm documented in this report, 
alternative function approximation methods, such as radial basis functions 
(Powell, 1992), could also have been used. Item 6 above refers to the SEM-
FA algorithm which is presented and discussed below while item 7 above 
refers to the current method that is employed to regulate the degree to 
which the function approximation model is utilized in SEM-FA. Both items 
6 and 7 will be discussed further below.  

As Vrugt et al. (2003a) mentioned, one of the essential elements of the 
SCEM-UA algorithm is the Sequence Evolution Metropolis (SEM) 
algorithm, wherein new candidate points are produced in each of the 
parallel sequences Sk and the Metropolis algorithm is used to test whether 
or not the candidate point should be added to the current sequence. As 
part of the overall effort to further improve upon the already existing 
reported efficiencies of the SCEM-UA MCMC sampler, the SEM algorithm 
was adapted to include a function approximation model which is used as a 
surrogate for the objective function. It is named SEM-FA for Sequence 
Evolution Metropolis Function Approximation and it is presented below 
and also in Figure 2. As with the previously mentioned comparison of the 
SCEM-UA and SCEM-FA algorithms, the SEM-FA algorithm retains all of 
the elements of the original SEM algorithm. And we refer the interested 
reader to Vrugt et al. (2003a) for a thorough description and discussion of 
the original SEM algorithm. However, for purposes of completeness, we 
present the entire SEM-FA algorithm. We will emphasize those parts 
which constitute the existing function approximation interface to the 
original SEM algorithm. 

I. Compute the mean, µk, and covariance structure ∑k of the parameters of 
Ck. Sort the m points in complex Ck in order of decreasing posterior density 
and compute Γk, the ratio of the posterior density of first (“best”) to the 
posterior density of the last (“worst”) member of Ck.  

II. Compute αk, the ratio of the mean posterior density of the m points in C k 
to the mean posterior density of the last m generated points in Sk. 

III. If αk is smaller than a predefined likelihood ratio, T, generate a candidate 
point, θ(t+1), by using a multinormal distribution centered on the last draw, 
θ(t), of the sequence, Sk, and covariance structure cn2∑k, where cn is a 
predefined jumprate. Go to step V, otherwise, continue with step IV. 

IV. Generate offspring, θ(t+1), by using a multinormal distribution with mean 
µk and covariance structure cn2∑k, and go to step V. 
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V. If the random number from the interval (0,1), input from SCEM-FA, is less 
than r, then use the function approximation to compute the posterior 
density, p(θ(t+1)|y), of θ(t+1) using equation (4). If the generated candidate 
point is outside the feasible parameter space, then set p(θ(t+1)|y) to zero. 

VI. If the random number from the interval (0,1), input from SCEM-FA, is 
greater than or equal to r, then perform a forward model call, compute the 
posterior density, p(θ(t+1)|y), of θ(t+1) using equation (4), and update the 
LWPR function approximation with the new data point θ(t+1). If the 
generated candidate point is outside the feasible parameter space, then set 
p(θ(t+1)|y) to zero.  

VII. Randomly sample a uniform label Z over the interval 0 to 1.  
VIII. If the random number from the interval (0,1), input from SCEM-FA, is less 

than r, then go to step IX; otherwise, go to step XII. 
IX. Compute the ratio Ω = p(θ(t+1)|y)/ p(θ(t)|y). If Z is smaller than or identical 

to Ω, then perform a forward model call, compute the posterior density, 
p(θ(t+1)|y), of θ(t+1) using equation (4), and update the LWPR function 
approximation with the new data point θ(t+1). If the generated candidate 
point is outside the feasible parameter space, then set p(θ(t+1)|y) to zero.  

X. However, if Z is larger than Ω, reject the candidate point and remain at the 
current position in the sequence, that is, θ(t+1) = θ(t). Go to step XIII. 

XI. Recompute the ratio Ω = p(θ(t+1)|y)/ p(θ(t)|y). If Z is smaller than or 
identical to Ω, then accept the new candidate point. However, if Z is larger 
than Ω, reject the candidate point and remain at the current position in the 
sequence, that is, θ(t+1) = θ(t). Go to step XIII. 

XII. Compute the ratio Ω = p(θ(t+1)|y)/ p(θ(t)|y). If Z is smaller than or identical 
to Ω, then accept the new candidate point. However, if Z is larger than Ω, 
reject the candidate point and remain at the current position in the 
sequence, that is, θ(t+1) = θ(t). 

XIII. Add the point θ(t+1) to the sequence Sk. 
XIV. If the candidate point is accepted, replace the best member of C k with θ(t+1), 

and go to step XV; otherwise replace the worst member (m) of C k with 
θ(t+1), provided that Γk is larger than the predefined likelihood ratio, T, and 
p(θ(t+1)|y) is higher than the posterior density of the worst member of Ck. 

XV. Repeat the steps I – XIII L times, where L is the number of evolution steps 
taken by each sequence before complexes are shuffled. 

Items I – IV, VI, VII, and XII – XV (with the SCEM-FA input value r set to 
zero) are a restatement of the native SEM algorithm originally presented 
in Vrugt et al. (2003a). The SCEM-FA algorithm is equivalent to the 
original SCEM-UA algorithm when the SCEM-FA input parameter r is set 
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to a value of zero. Items I – XV directly above list the existing modification 
to the original SEM algorithm.  

The basic reasoning behind SEM-FA is that if the function approximation 
prediction, which is used as a surrogate for the objective function, suggests 
that the candidate point should be selected, by way of evaluation of the 
Metropolis algorithm criterion (Metropolis et al. 1953), then proceed 
ahead with a forward model call and re-evaluation of the Metropolis 
algorithm criterion to determine if in fact the candidate point is to be 
accepted or not. And if the Metropolis algorithm criterion computed using 
the function approximation prediction indicates otherwise, then reject the 
candidate point. In effect, the function approximation prediction serves as 
a screening device in that forward model calls are only performed when it 
suggests that it would be beneficial. And the degree to which the filter is 
applied is based on a SCEM-FA input parameter, r, which is dynamically 
adjusted during SCEM-FA execution, and its comparison (see Figure 2) 
with a unique randomly sampled uniform label over the interval 0 to 1 that 
is passed to SEM-FA for the evolution of each sequence (see Figure 1).  

If the SCEM-FA input value for r is greater than zero, then the function 
approximation adaptations described above and also shown in Figures 1 and 
2 will be active. In this case, the value for r is reset to zero at the beginning 
of SCEM-FA execution and dynamic adjustment is subsequently based not 
only on a comparison of the candidate point acceptance rate within SEM-FA 
with a user specified acceptance rate threshold, but also the integer value for 
a persistence parameter which determines the frequency for updating the 
value for r. In particular, at present, if it is an opportunity to update r and 
the SEM-FA acceptance rate is less/greater than the user specified 
acceptance rate threshold, then decrease/increase the value for r by one-
tenth. The minimum possible value for r is zero, and its maximum is 
equivalent to its specified input value. At present, an input value is specified 
for r. However, it could possibly be effectively removed as an input for 
SCEM-FA by altering the existing dynamic adjustment process to simply 
allow the value for r to vary between zero and one. Testing is needed to 
explore this potential opportunity. If it is not already clear to the reader, 
decreasing/increasing the value for r increases/decreases the number of 
forward model calls within SEM-FA.  

Guidance for the proper selection of SCEM-UA algorithmic input 
parameter values can be found in Vrugt et al. (2003a). The SCEM-FA 
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algorithm contains three additional parameters that at present need to be 
specified by the user. These are (1) the random number threshold, r, (2) 
the acceptance rate threshold, a, and (3) the parameter, p, an integer value 
which determines the update frequency for r. The increment/decrement 
value embedded in the dynamic adjustment process for r could also be 
viewed as a parameter that could possibly impact SCEM-FA performance. 
Further exploration in terms of how these parameters affect the reliability 
(i.e., the capacity to converge to the same posterior probability distribution 
as the native SCEM-UA algorithm) and efficiency of SCEM-FA is needed 
before any recommendations can be provided for default values. However, 
optimal acceptance rates for MCMC samplers range anywhere from 20 – 
70 percent in the literature (Gallagher and Doherty, 2007).  

Additional opportunities exist, of course, for further exploration in terms 
of their potential capacity to yield additional efficiency gains beyond those 
already achieved and documented below with the existing SCEM-FA 
implementation. These include, among others, (1) relaxing the current 
requirement to perform a forward model call every time the function 
approximation suggests that the candidate point is to be accepted, and 
(2) comparing the current function approximation model with an 
alternative model, such as radial basis functions (Powell, 1992). Both of 
these opportunities would be modest development efforts. 

With respect to the first opportunity noted directly above, at present, 
SCEM-FA is biased conservatively in that we completely trust the function 
approximation prediction to reject candidate points; whereas, if the 
function approximation prediction suggests that the candidate point is to be 
accepted, then we go to additional measures to ensure that is in fact the 
case. One alternative would be to simply accept the candidate point when 
the function approximation prediction suggests it should; however, that 
approach may be too aggressive and impair the reliability of SCEM-FA. A 
relatively simple easily implementable approach would be to monitor the 
success rate of the function approximation prediction and use that as a basis 
for deciding whether to perform a forward model call after the function 
approximation prediction suggests the candidate point is to be accepted. 
The second opportunity mentioned directly above would be a fairly modest 
effort because early SCEM-FA development utilized a k-nearest neighbor 
cubic radial basis function (RBF) local function approximation model rather 
than locally weighted projection regression (LWPR).  
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3 Case Study 

To comprehensively demonstrate the efficiency gains that can be achieved 
with the SCEM-FA development efforts to date, all the while maintaining 
consistency with respect to convergence to the same target distribution, 
thirty unique instances of SCEM-UA and SCEM-FA were each employed to 
infer the posterior distribution of thirteen Sacramento soil moisture 
accounting (SAC-SMA) hydrologic model parameters using hydrologic 
data from the 1944 km2 Leaf River watershed near Collins, MS. The SAC-
SMA hydrologic model is used by the National Weather Service (NWS) for 
flood forecasting throughout the United States. While it has 16 parameters 
that need to be specified by the user, consistent with previous work (see 
Vrugt et al. 2003b and references cited therein), 13 were specified as 
adjustable. The prior uncertainty ranges of the specified adjustable SAC-
SMA hydrologic model parameters are defined in Table 1. The reader is 
referred to (see Vrugt et al. 2003b and references cited therein) for 
comprehensive discussions regarding the SAC-SMA hydrologic model, the 
Leaf River watershed, and also its related hydrologic data (viz., mean areal 
precipitation (mm/day), potential evapotranspiration (mm/day), and 
streamflow (m3/s)) that was used to support the effective inference of the 
posterior distribution of the SAC-SMA adjustable model parameters and 
also the most likely parameters within this high probability density region. 

Table 1. Prior uncertainty ranges of the SAC-SMA model parameters. 

Parameter Minimum Maximum Unit 

UZTWM 1 150 [mm] 

UZFWM 1 150 [mm] 

UZK 0.1 0.5 day-1 

PCTIM 0 0.1 [-] 

ADIMP 0 0.4 [-] 

ZPERC 1 250 [-] 

REXP 1 5 [-] 

LZTWM 1 500 [mm] 

LZFSM 1 1000 [mm] 

LZFPM 1 1000 [mm] 

LZSK 0.01 0.25 day-1 

LZPK 0.0001 0.025 day-1 

PFREE 0 0.6 [-] 
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Results associated with the thirty trials are summarized in Tables 2 – 8 and 
Figure 3. The results presented in Tables 2 – 5 are associated with an earlier 
version of SCEM-FA wherein the input parameter r was fixed and not 
dynamically adjusted as it is now, based on the candidate point acceptance 
rate, an acceptance rate threshold, and the persistence parameter, p, which 
dictates the update frequency for r. Examining the results in Table 2, we 
clearly see as one would expect, improved efficiency for SCEM-FA relative 
to SCEM-UA as the value for r increases. However, the improved efficiency 
that is obtained through more aggressive utilization of the function approxi-
mation prediction comes at the cost of decreased effectiveness in terms of 
convergence to the same posterior probability distribution as SCEM-UA, 
evidenced upon inspection of the lower order statistics for the objective 
function and SAC-SMA parameter values that are presented in Tables 3 – 5. 

Table 2. Summary of efficiency for an earlier version of SCEM-FA, relative to SCEM-UA, for 
fixed values of r. Results are based on thirty unique instances of the earlier version of SCEM-

FA and also SCEM-UA. 

Total Model Calls 

 
SCEM-UA 

SCEM-FA 

Random Number Threshold in SEM-FA 

0.1 0.3 0.5 0.7 0.9 

Average 87253 79379 70602 66852 55158 50090 

% reduction   9.0 19.1 23.4 36.8 42.6 

Table 3. Summary of objective function value lower order statistics for an earlier version of 
SCEM-FA, relative to SCEM-UA, for fixed values of r. Each individual result if based on thirty 

unique instances for the earlier version of SCEM-FA and also SCEM-UA, in particular, 15,000 
(500 for each of the 30 trials) samples generated after convergence to a posterior 

distribution has been achieved with either the SCEM-FA or SCEM-UA. 

Method 

Objective Function Values 

Average Standard Deviation 

SCEM-UA 13.31669413 0.02331727 

SCEM-FA (r=0.1) 13.3073988 0.030142989 

SCEM-FA (r=0.3) 13.35390347 0.21756169 

SCEM-FA (r=0.5) 13.3382782 0.218278563 

SCEM-FA (r=0.7) 13.42101667 0.325857754 

SCEM-FA (r=0.9) 13.6533664 0.252643413 
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Table 4. Summary of SAC-SMA average parameter values obtained from an earlier version of SCEM-FA, for fixed 
values of r, and also SCEM-UA. Each individual result is based on thirty unique instances for the earlier version of 

SCEM-FA and also SCEM-UA, in particular, 15,000 (500 for each of the 30 trials) samples generated after 
convergence to a posterior distribution has been achieved with either the SCEM-FA or SCEM-UA. 

 

Table 5. Summary of standard deviations associated with SAC-SMA parameter values obtained from an 
earlier version of SCEM-FA, for fixed values of r, and also SCEM-UA. Each individual result is based on thirty 

unique instances for the earlier version of SCEM-FA and also SCEM-UA, in particular, 15,000 (500 for each of 
the 30 trials) samples generated after convergence to a posterior distribution has been achieved with either 

the SCEM-FA or SCEM-UA. 

 

Table 6. Summary of objective function value lower order statistics for 
SCEM-FA, relative to SCEM-UA. Each individual result is based on thirty 

unique instances for SCEM-FA and also SCEM-UA, in particular, 15,000 (500 
for each of the 30 trials) samples generated after convergence to a posterior 

distribution has been achieved with either the SCEM-FA or SCEM-UA. 

Method 

Objective Function Values 

Average Standard Deviation 

SCEM-UA 13.31669413 0.02331727 

SCEM-FA 13.27271167 0.02663205 

Table 7. Summary of SAC-SMA average parameter values obtained from SCEM-FA and also SCEM-UA. Each 
individual result is based on thirty unique instances for SCEM-FA and also SCEM-UA, in particular, 15,000 
(500 for each of the 30 trials) samples generated after convergence to a posterior distribution has been 

achieved with either the SCEM-FA or SCEM-UA. 
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Table 8. Summary of standard deviations associated with SAC-SMA parameter values obtained from SCEM-FA 
and also SCEM-UA. Each individual result is based on thirty unique instances for SCEM-FA and also SCEM-UA, 

in particular, 15,000 (500 for each of the 30 trials) samples generated after convergence to a posterior 
distribution has been achieved with either the SCEM-FA or SCEM-UA. 

 

 
Figure 3. The marginal posterior probability distributions of the SAC-SMA model parameters 

inferred for the Leaf River watershed using the 15,000 (500 for each of the 30 trials) 
samples generated with the SCEM-UA (1st and 3rd columns) and SCEM-FA (2nd and 4th 

columns) algorithms after convergence has been achieved with SCEM-UA and SCEM-FA. 
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In attempts to balance efficiency with effectiveness, different heuristics for 
controlling the activation of the function approximation prediction within 
SCEM-FA were subsequently implemented, resulting in the existing SCEM-
FA implementation documented in this report. Based on the thirty trials, 
the average number of forward model calls for SCEM-UA was 87,253; 
whereas, it was 68,642 with SCEM-FA, resulting in an approximate 
21 percent reduction in total forward model calls. Comparing lower order 
statistics associated with the objective function and related parameter 
values obtained from samples generated after convergence to a posterior 
distribution has been achieved with either the SCEM-FA or SCEM-UA, as 
shown in Tables 6 – 8, it is clear that the existing SCEM-FA algorithm 
converged to the same target distribution as SCEM-UA. The results 
presented in Figure 3, marginal posterior probability distributions of the 
SAC-SMA model parameters based on 15,000 (500 for each of the 30 trials) 
samples generated with the SCEM-UA and SCEM-FA algorithms after 
convergence has been achieved with SCEM-UA and SCEM-FA, further 
confirm this observation. The results presented in Tables 6 – 8 and Figure 3 
were obtained with SCEM-FA input parameters set to r = 0.9, a = 0.35, and 
p = 3. 
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4 Summary 

This report began by outlining the need for hydrologic model calibration 
and, related, the realistic assessment of hydrologic model uncertainty, 
which has many benefits, including model comparison and selection, 
identification of the best water management strategies that reflect the 
likelihood of outcomes, data collection aimed at improving hydrologic 
predictions and water management, and regionalization and extrapolation 
of hydrologic parameters to ungauged basins. Bayesian-based approaches 
to model calibration, in particular Markov Chain Monte Carlo (MCMC) 
simulation methods, are a formal means to obtain a realistic and reliable 
estimate of model uncertainty. However, their application comes at a 
computational cost. For hydrologic modeling, it was noted that there is a 
need to design efficient MCMC samplers, and this observation was in fact 
the motivation for the development of the Shuffled Complex Evolution 
Metropolis algorithm (SCEM-UA) (Vrugt et al. 2003a). The primary 
objective of the research and development encapsulated in this report was 
to improve upon the already existing documented efficiency of the state-
of-the-art Bayesian model uncertainty analysis method SCEM-UA (Vrugt 
et al. 2003a). As with other recent research and development activity that 
was directed to enhancing the efficiency to the state-of-the-art covariance 
matrix adaption evolution strategy (CMAES) (Baggett and Skahill, 2010a, 
b), the principal approach that was employed to achieve that stated 
objective was to simultaneously and adaptively construct an 
approximation to the objective function.  

The report followed with some brief background material and then a 
description of the current methodology that is employed for interfacing a 
function approximation model with the native SCEM-UA algorithm to 
improve upon its already existing documented efficiency. Thereafter, 
based on a comprehensive set of thirty trials using the SAC-SMA soil 
moisture accounting hydrologic model and local hydrologic data for the 
Leaf River watershed near Collins, MS, it was clearly demonstrated that 
SCEM-FA was able to achieve, on average, a 21 percent reduction in total 
model calls while inferring the same posterior probability distribution as 
that obtained with SCEM-UA.  
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Several opportunities exist for future development (and likely additional 
efficiency gains) and also application. Numerical experiments are needed to 
explore how the random number threshold, r, the acceptance rate 
threshold, a, the parameter, p, an integer value which determines the 
update frequency for r, and the increment/decrement value embedded in 
the dynamic adjustment process for r impact overall SCEM-FA 
performance, relative to SCEM-UA, in terms of efficiency and reliability. A 
relatively simple and easily implementable approach that would likely yield 
additional efficiency gains for the current implementation of SCEM-FA 
would be to monitor the success rate of the function approximation 
prediction and use that as a basis for deciding whether to perform a forward 
model call after the function approximation prediction suggests the 
candidate point is to be accepted. Early SCEM-FA development utilized a k-
nearest neighbor cubic radial basis function (RBF) local function 
approximation model rather than locally weighted projection regression 
(LWPR). It would be interesting to explore how the two different function 
approximation models impact overall SCEM-FA performance, relative to 
SCEM-UA, in terms of efficiency and reliability. Moreover, it could be of 
potential benefit to explore ways in which the confidence estimate 
associated with the LWPR function approximation prediction could be 
beneficially used to improve overall SCEM-FA performance, relative to 
SCEM-UA, in terms of efficiency and reliability. Additional case studies are 
needed to further document SCEM-FA performance in terms of efficiency 
relative to SCEM-UA. And future applications need to focus on model 
prediction uncertainty. As was mentioned earlier, the methods reported 
upon in this report should be relatively easy to transfer to other MCMC 
methods. It is our intent to explore just that with the DREAM MCMC 
sampler, particularly in light of potential balance issues that have been 
presented regarding the SCEM-UA algorithm (Vrugt et al. 2008). The code 
for the SCEM-FA algorithm is available from the first author. 
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distribution for thirteen SAC-SMA hydrologic model parameters as that of SCEM-UA with an average twenty-one percent savings in 
total forward model calls. 
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